Fundamentos físicos y matemáticos de la mecánica cuántica

Sergio Grillo

Instituto Balseiro - Centro Atómico Bariloche

Mayo 2023

1 El formalismo usual de la Mecánica Cuántica.

- 1 El formalismo usual de la Mecánica Cuántica.
- 2 El formalismo alternativo.

- 1 El formalismo usual de la Mecánica Cuántica.
- 2 El formalismo alternativo.
- Se La comparación.

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

• Procurar que la pelotita tenga masa m (fija).

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa *m* (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad estén dadas por algún par $(r,v) \in \mathbb{R}^3 \times \mathbb{R}^3$ (variable).

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad estén dadas por algún par $(r,v) \in \mathbb{R}^3 \times \mathbb{R}^3$ (variable).

Las preparaciones estarían entonces en biyección con $\mathbb{R}^3 \times \mathbb{R}^3$.

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza F (fija).
- Hacer que a t=0 su posición y velocidad estén dadas por algún par $(r,v) \in \mathbb{R}^3 \times \mathbb{R}^3$ (variable).

Las preparaciones estarían entonces en biyección con $\mathbb{R}^3 \times \mathbb{R}^3$.

Mediciones:

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza $m{F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa *m* (fija).
- Ejercer sobre ella una fuerza F (fija).
- Hacer que a t=0 su posición y velocidad estén dadas por algún par $(r,v) \in \mathbb{R}^3 \times \mathbb{R}^3$ (variable).

Las preparaciones estarían entonces en biyección con $\mathbb{R}^3 \times \mathbb{R}^3$.

Mediciones:

• Operaciones de laboratorio asociadas a funciones suaves $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

"Pelotita de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza $m{F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad estén dadas por algún par $(r,v)\in\mathbb{R}^3\times\mathbb{R}^3$ (variable).

Las preparaciones estarían entonces en biyección con $\mathbb{R}^3 \times \mathbb{R}^3$.

Mediciones:

• Operaciones de laboratorio asociadas a funciones suaves $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, las cuales definen los **observables**: $\mathcal{O}_f \simeq \operatorname{Im} f$.

$$\mathcal{F} = \underbrace{\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

$$\mathcal{F} = \underbrace{\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra que

$$\mathcal{R} \cap \left(\left(\mathbb{R}^3 \times \mathbb{R}^3 \right) \times \mathcal{O}_f \right) = \mathsf{graf}\left(f \right).$$

$$\mathcal{F} = \underbrace{\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra que

$$\mathcal{R}\cap \left(\left(\mathbb{R}^3 imes\mathbb{R}^3\right) imes\mathcal{O}_f
ight)=\mathsf{graf}\left(f
ight).$$

O sea, se trata de un sistema determinístico.

$$\mathcal{F} = \underbrace{\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra que

$$\mathcal{R} \cap \left(\left(\mathbb{R}^3 \times \mathbb{R}^3 \right) \times \mathcal{O}_f \right) = \operatorname{\mathsf{graf}} \left(f \right).$$

O sea, se trata de un sistema determinístico. En otras palabras,

$$p_{\mathcal{O}_{f}}^{(\mathsf{r},\mathsf{v})}\left(x\right) = \delta\left(x - f\left(\mathsf{r},\mathsf{v}\right)\right), \quad \forall x \in \mathbb{R}.$$

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

• Procurar que la pelotita tenga masa m (fija).

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad pertenezcan a cada subconjunto (de Borel) $\Omega \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ con probabilidad $\mu(\Omega)$, dada por una medida μ (variable).

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad pertenezcan a cada subconjunto (de Borel) $\Omega \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ con probabilidad $\mu(\Omega)$, dada por una medida μ (variable).

Las preparaciones estarían en biyección con medidas $\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)$.

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza F (fija).
- Hacer que a t=0 su posición y velocidad pertenezcan a cada subconjunto (de Borel) $\Omega \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ con probabilidad $\mu(\Omega)$, dada por una medida μ (variable).

Las preparaciones estarían en biyección con medidas $\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)$.

Mediciones:

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad pertenezcan a cada subconjunto (de Borel) $\Omega \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ con probabilidad $\mu(\Omega)$, dada por una medida μ (variable).

Las preparaciones estarían en biyección con medidas $\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)$.

Mediciones:

• Operaciones de laboratorio asociadas a funciones medibles $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

"Pelotita estadística de masa m moviéndose en \mathbb{R}^3 y sometida a una fuerza ${m F}$."

Preparaciones = Estados:

- Procurar que la pelotita tenga masa m (fija).
- Ejercer sobre ella una fuerza **F** (fija).
- Hacer que a t=0 su posición y velocidad pertenezcan a cada subconjunto (de Borel) $\Omega \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ con probabilidad $\mu(\Omega)$, dada por una medida μ (variable).

Las preparaciones estarían en biyección con medidas $\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)$.

Mediciones:

• Operaciones de laboratorio asociadas a funciones medibles $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, las cuales definen los **observables**: $\mathcal{O}_f \simeq \operatorname{Im} f$.

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^3\times\mathbb{R}^3\right)\times\mathcal{O}_f\right)$$

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^{3}\times\mathbb{R}^{3}\right)\times\mathcal{O}_{f}\right)$$

ya no es en general el gráfico de una función.

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^{3}\times\mathbb{R}^{3}\right)\times\mathcal{O}_{f}\right)$$

ya no es en general el gráfico de una función. O sea, se trata de un sistema no determinístico.

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^3 imes\mathbb{R}^3
ight) imes\mathcal{O}_f
ight)$$

ya no es en general el gráfico de una función. O sea, se trata de un sistema no determinístico. Más precisamente, se tiene que

$$p_{\mathcal{O}_f}^{\mu}\left(U\right) = \int_{f^{-1}\left(U\right)} \mu = \mu\left(f^{-1}\left(U\right)\right), \quad \forall U \in B\left(\mathbb{R}\right).$$

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^3 imes\mathbb{R}^3
ight) imes\mathcal{O}_f
ight)$$

ya no es en general el gráfico de una función. O sea, se trata de un sistema no determinístico. Más precisamente, se tiene que

$$p_{\mathcal{O}_f}^{\mu}\left(U\right) = \int_{f^{-1}\left(U\right)} \mu = \mu\left(f^{-1}\left(U\right)\right), \quad \forall U \in B\left(\mathbb{R}\right).$$

Nota. Si $\mu = \delta_{(r,v)}$,

$$\mathcal{F} = \underbrace{\mathcal{M}\left(\mathbb{R}^3 \times \mathbb{R}^3\right)}_{\text{preparaciones}} \times \underbrace{\bigvee_{f} \text{Im} f}_{\text{mediciones}}.$$

La experiencia muestra en este caso que

$$\mathcal{R}\cap\left(\mathcal{M}\left(\mathbb{R}^3 imes\mathbb{R}^3
ight) imes\mathcal{O}_f
ight)$$

ya no es en general el gráfico de una función. O sea, se trata de un sistema **no determinístico**. Más precisamente, se tiene que

$$p_{\mathcal{O}_f}^{\mu}\left(U\right) = \int_{f^{-1}\left(U\right)} \mu = \mu\left(f^{-1}\left(U\right)\right), \quad \forall U \in B\left(\mathbb{R}\right).$$

Nota. Si $\mu = \delta_{(r,v)}$, obtengo las probabilidades del caso determinístico.

Se caracterizan principalmente por los siguientes aspectos:

Omponente estadística irreductible.

Se caracterizan principalmente por los siguientes aspectos:

1 Componente estadística irreductible. Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.

- **1** Componente estadística irreductible. Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- Principio de incertidumbre.

- **Omponente estadística irreductible.**Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- ② Principio de incertidumbre. Para todo estado ρ , existen observables $\mathcal{O}_1, \mathcal{O}_2$ tales que $\Delta \mathcal{O}_1^2 \cdot \Delta \mathcal{O}_2^2 > 0$.

- **1** Componente estadística irreductible. Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- ② Principio de incertidumbre. Para todo estado ρ , existen observables $\mathcal{O}_1, \mathcal{O}_2$ tales que $\Delta \mathcal{O}_1^2 \cdot \Delta \mathcal{O}_2^2 > 0$.
- Magnitudes cuantizadas.

- **1** Componente estadística irreductible. Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- ② Principio de incertidumbre. Para todo estado ρ , existen observables $\mathcal{O}_1, \mathcal{O}_2$ tales que $\Delta \mathcal{O}_1^2 \cdot \Delta \mathcal{O}_2^2 > 0$.
- Magnitudes cuantizadas. Tipicamente, los observables toman valores "discretos."

- **1** Componente estadística irreductible. Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- ② Principio de incertidumbre. Para todo estado ρ , existen observables $\mathcal{O}_1, \mathcal{O}_2$ tales que $\Delta \mathcal{O}_1^2 \cdot \Delta \mathcal{O}_2^2 > 0$.
- Magnitudes cuantizadas. Tipicamente, los observables toman valores "discretos."
- Principio de superposición.

- **Omponente estadística irreductible.**Para todo estado ρ , existe un observable \mathcal{O} tal que su dispersión $\triangle \mathcal{O}^2$ es no nula.
- ② Principio de incertidumbre. Para todo estado ρ , existen observables $\mathcal{O}_1, \mathcal{O}_2$ tales que $\Delta \mathcal{O}_1^2 \cdot \Delta \mathcal{O}_2^2 > 0$.
- Magnitudes cuantizadas. Tipicamente, los observables toman valores "discretos."
- Principio de superposición.
 Esto da lugar a fenómenos tales como: interferencia, coherencia y entrelazado.

Estados:

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4).

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados *simples*),

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{\nu}(w) \rangle = |\langle v, w \rangle|^2 \ge 0 \quad \text{y} \quad \text{tr}(\rho_{\nu}) = \langle v, v \rangle = ||v||^2 = 1.$$

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{\nu}(w) \rangle = |\langle v, w \rangle|^2 \ge 0 \quad \text{y} \quad \text{tr}(\rho_{\nu}) = \langle v, v \rangle = ||v||^2 = 1.$$

Observables:

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{v}(w) \rangle = |\langle v, w \rangle|^{2} \geq 0 \quad \text{y} \quad \text{tr}(\rho_{v}) = \langle v, v \rangle = ||v||^{2} = 1.$$

Observables: Operadores \mathcal{O} hermíticos en $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{\nu}(w) \rangle = |\langle v, w \rangle|^2 \ge 0 \quad \text{y} \quad \text{tr}(\rho_{\nu}) = \langle v, v \rangle = ||v||^2 = 1.$$

Observables: Operadores \mathcal{O} hermíticos en $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Los valores de \mathcal{O} son los elementos de su espectro.

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados *simples*), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{\nu}(w) \rangle = |\langle v, w \rangle|^2 \ge 0 \quad \text{y} \quad \text{tr}(\rho_{\nu}) = \langle v, v \rangle = ||v||^2 = 1.$$

Observables: Operadores $\mathcal O$ hermíticos en $(\mathcal H,\langle\cdot,\cdot\rangle)$. Los valores de $\mathcal O$ son los elementos de su espectro. (Si $\mathcal O$ es hermítico, i.e. $\mathcal O=\mathcal O^\dagger$.

4D > 4B > 4B > 4B > 900

Estados: Operadores ρ semi-definidos positivos y de traza unidad en un dado espacio de Hilbert $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

(Se puede ver que esto asegura 4). Los vectores $v \in \mathcal{H}$ de norma 1 definen estados (llamados simples), dados por

$$\rho_{v}(w) = \langle v, w \rangle \cdot v.$$

De hecho,

$$\langle w, \rho_{\nu}(w) \rangle = |\langle v, w \rangle|^2 \ge 0 \quad \text{y} \quad \text{tr}(\rho_{\nu}) = \langle v, v \rangle = ||v||^2 = 1.$$

Observables: Operadores $\mathcal O$ hermíticos en $(\mathcal H,\langle\cdot,\cdot\rangle)$. Los valores de $\mathcal O$ son los elementos de su espectro.

(Si $\mathcal O$ es hermítico, i.e. $\mathcal O=\mathcal O^\dagger$, su espectro Λ es un subconjunto de $\mathbb R$).

Existen observables tales que $\Lambda = \{\lambda_i\}_{i \in \mathbb{N}}$. (Esto asegura 3).

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

En general, asociado a \mathcal{O} , existe una función $P:U\in B\left(\mathbb{R}\right)\mapsto P_{U}$, su medida espectral,

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

En general, asociado a \mathcal{O} , existe una función $P:U\in B\left(\mathbb{R}\right)\mapsto P_{U}$, su medida espectral, tal que, para todo $v\in\mathcal{H}$,

$$P_{v}:U\in B\left(\mathbb{R}\right) \mapsto\left\langle v,P_{U}\left(v\right) \right\rangle \in\mathbb{R}$$

es una medida,

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

En general, asociado a \mathcal{O} , existe una función $P:U\in B\left(\mathbb{R}\right)\mapsto P_{U}$, su medida espectral, tal que, para todo $v\in\mathcal{H}$,

$$P_{v}:U\in B\left(\mathbb{R}\right) \mapsto\left\langle v,P_{U}\left(v\right) \right\rangle \in\mathbb{R}$$

es una medida, y vale que $\langle v, \mathcal{O}(v) \rangle = \int \lambda P_v$.

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

En general, asociado a \mathcal{O} , existe una función $P:U\in B\left(\mathbb{R}\right)\mapsto P_{U}$, su medida espectral, tal que, para todo $v\in\mathcal{H}$,

$$P_{v}:U\in B\left(\mathbb{R}\right) \mapsto\left\langle v,P_{U}\left(v\right) \right\rangle \in\mathbb{R}$$

es una medida, y vale que $\langle v, \mathcal{O}(v) \rangle = \int \lambda P_v$. Esto suele escribirse

$$\mathcal{O} = \int \lambda P.$$

$$\mathcal{O} = \sum_{i \in \mathbb{N}} \lambda_i P_i$$
.

En general, asociado a \mathcal{O} , existe una función $P:U\in B\left(\mathbb{R}\right)\mapsto P_{U}$, su medida espectral, tal que, para todo $v\in\mathcal{H}$,

$$P_{v}:U\in B\left(\mathbb{R}\right) \mapsto\left\langle v,P_{U}\left(v\right) \right
angle \in\mathbb{R}$$

es una medida, y vale que $\langle v, \mathcal{O}(v) \rangle = \int \lambda P_v$. Esto suele escribirse

$$\mathcal{O} = \int \lambda P.$$

En consecuencia, dar \mathcal{O} es lo mismo que dar su medida espectral P.

Probabilidades:

Probabilidades: Dado un estado ρ y un observable \mathcal{O} ,

1 (espectro discreto) $\lambda_i \in \Lambda$ es

$$p_{\mathcal{O}}^{\rho}(\lambda_i) = \operatorname{tr}(\rho P_i);$$

① (espectro discreto) $\lambda_i \in \Lambda$ es

$$p_{\mathcal{O}}^{\rho}(\lambda_i) = \operatorname{tr}(\rho P_i);$$

② (caso general) algún valor dentro de $U \subseteq \mathbb{R}$ es

$$p_{\mathcal{O}}^{\rho}\left(U\right)=\operatorname{tr}\left(\rho\,P_{U}\right).$$

① (espectro discreto) $\lambda_i \in \Lambda$ es

$$p_{\mathcal{O}}^{\rho}(\lambda_i) = \operatorname{tr}(\rho P_i);$$

② (caso general) algún valor dentro de $U \subseteq \mathbb{R}$ es

$$p_{\mathcal{O}}^{\rho}\left(U\right)=\operatorname{tr}\left(\rho\,P_{U}\right).$$

¿Qué pasa con los puntos 1 y 2 de arriba?

① (espectro discreto) $\lambda_i \in \Lambda$ es

$$p_{\mathcal{O}}^{\rho}(\lambda_i) = \operatorname{tr}(\rho P_i);$$

② (caso general) algún valor dentro de $U \subseteq \mathbb{R}$ es

$$p_{\mathcal{O}}^{\rho}\left(U\right)=\operatorname{tr}\left(\rho\,P_{U}\right).$$

¿Qué pasa con los puntos 1 y 2 de arriba? Se puede ver que el valor medio de $\mathcal O$ en ρ es

$$\langle \mathcal{O} \rangle_{\rho} = \operatorname{tr} \left(\rho \, \mathcal{O} \right),$$

① (espectro discreto) $\lambda_i \in \Lambda$ es

$$p_{\mathcal{O}}^{\rho}(\lambda_i) = \operatorname{tr}(\rho P_i);$$

② (caso general) algún valor dentro de $U \subseteq \mathbb{R}$ es

$$p_{\mathcal{O}}^{\rho}\left(U\right)=\operatorname{tr}\left(\rho\,P_{U}\right).$$

¿Qué pasa con los puntos 1 y 2 de arriba? Se puede ver que el valor medio de $\mathcal O$ en ρ es

$$\langle \mathcal{O} \rangle_{\rho} = \operatorname{tr} \left(\rho \, \mathcal{O} \right),$$

y en un estado simple v es

$$\langle \mathcal{O} \rangle_{v} = \langle v, \mathcal{O}(v) \rangle.$$

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O}
ight
angle_{
ho}
ight)^2
ight
angle_{
ho}.$$

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right
angle_{
ho}
ight)^2 \right
angle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1,\mathcal{O}_2]=\mathcal{O}_1\,\mathcal{O}_2-\mathcal{O}_2\,\mathcal{O}_1=\mathcal{C}$,

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right
angle_{
ho}
ight)^2
ight
angle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1,\mathcal{O}_2]=\mathcal{O}_1\,\mathcal{O}_2-\mathcal{O}_2\,\mathcal{O}_1=\mathcal{C}$, puede verse que

$$\Delta_{\rho}\mathcal{O}_{1}^{2}\cdot\Delta_{\rho}\mathcal{O}_{2}^{2}\geq\frac{1}{4}\,\left|\langle\mathcal{C}\rangle_{\rho}\right|^{2}.$$

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right\rangle_{
ho} \right)^2 \right\rangle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1, \mathcal{O}_2] = \mathcal{O}_1 \mathcal{O}_2 - \mathcal{O}_2 \mathcal{O}_1 = \mathcal{C}$, puede verse que

$$\Delta_{
ho}\mathcal{O}_1^2\cdot\Delta_{
ho}\mathcal{O}_2^2\geq rac{1}{4}\,\left|\langle C
angle_{
ho}
ight|^2.$$

Luego, si $C = c \operatorname{Id} \operatorname{con} c \neq 0$,

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right\rangle_{
ho} \right)^2 \right\rangle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1, \mathcal{O}_2] = \mathcal{O}_1 \mathcal{O}_2 - \mathcal{O}_2 \mathcal{O}_1 = \mathcal{C}$, puede verse que

$$\Delta_{
ho}\mathcal{O}_{1}^{2}\cdot\Delta_{
ho}\mathcal{O}_{2}^{2}\geqrac{1}{4}\,\left|\left\langle C
ight
angle _{
ho}
ight|^{2}.$$

Luego, si $C = c \operatorname{Id} \operatorname{con} c \neq 0$,

$$\Delta_{
ho}\mathcal{O}_1^2\cdot\Delta_{
ho}\mathcal{O}_2^2\geq rac{1}{4}\;|c|^2>0.$$

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right
angle_{
ho}
ight)^2
ight
angle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1, \mathcal{O}_2] = \mathcal{O}_1 \mathcal{O}_2 - \mathcal{O}_2 \mathcal{O}_1 = \mathcal{C}$, puede verse que

$$\Delta_{
ho}\mathcal{O}_{1}^{2}\cdot\Delta_{
ho}\mathcal{O}_{2}^{2}\geqrac{1}{4}\,\left|\left\langle C
ight
angle _{
ho}
ight|^{2}.$$

Luego, si $C = c \operatorname{Id} \operatorname{con} c \neq 0$,

$$\Delta_{
ho}\mathcal{O}_1^2\cdot\Delta_{
ho}\mathcal{O}_2^2\geq rac{1}{4}\;|c|^2>0.$$

En todo espacio de Hilbert existen operadores como los de arriba.

$$\Delta_{
ho}\mathcal{O}^2 = \left\langle \left(\mathcal{O} - \left\langle \mathcal{O} \right\rangle_{
ho} \right)^2 \right\rangle_{
ho}.$$

Dados \mathcal{O}_1 y \mathcal{O}_2 tales que $[\mathcal{O}_1, \mathcal{O}_2] = \mathcal{O}_1 \mathcal{O}_2 - \mathcal{O}_2 \mathcal{O}_1 = \mathcal{C}$, puede verse que

$$\Delta_{
ho}\mathcal{O}_1^2\cdot\Delta_{
ho}\mathcal{O}_2^2\geq rac{1}{4}\,\left|\left\langle C
ight
angle_{
ho}
ight|^2.$$

Luego, si $C = c \operatorname{Id} \operatorname{con} c \neq 0$,

$$\Delta_{
ho}\mathcal{O}_1^2\cdot\Delta_{
ho}\mathcal{O}_2^2\geq rac{1}{4}\;|c|^2>0.$$

En todo espacio de Hilbert existen operadores como los de arriba. Esto asegura los puntos 1 y 2.